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SUMMARY

Reconsidering a clustering procedure by Corsten and Denis (1990) to obtain a parsi-
monious description of interaction in a two-way table the author introduces a different
stopping rule based on the comparison of the mean square for negligible interactions
with an external variance estimate. A more attractive idea of explaining interaction
might be the data-analytic identification of exceptionally high deviations from addi-
tivity. They are discovered in a selection process of indicator vectors, in principle
forward (and perhaps secondarily backward). Termination of the selection is based
on the comparison of the current residual mean square with an external variance esti-
mate (if absent with a substitute presented in the 1990 note). In a numerical example
the latter proposal turns out to be more parsimonious and specific than the former.

KEY WORDS: interaction, two-way table, clustering, stopping rule, mean square
for negligible interactions, individual extra-ordinary deviations, outliers, indicator
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1. Introduction

In a previous note by Corsten and Denis (1990) a clustering procedure was presented
in order to obtain a parsimonious description of interaction in a two-way table. Such
a table consists of I rows and J columns, rows and columns both corresponding to [
and J levels of purely qualitative and unstructured levels of two factors, e.g. different
genotypes of an agricultural crop and different locations, respectively. The purpose of
that procedure was to find groups of rows and groups of columns such that interaction
present was substantially explained by the interaction between those groups only.
The simultaneous clustering procedure of rows and columns was an agglomerative
hierarchical one in each step of which either two row classes or two column classes
were merged depending on which pair had currently the smallest proximity measure
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m. That measure is the mean square for interaction in the 2 X k or h X 2 submatrix
of the data matrix corresponding to the pair of row or column classes at hand, h and
k being the current number of row or column classes, respectively. Each m is equal
to the sum of squares for interaction in such a subtable divided by the appropriate
dimension & — 1 or h — 1. At step ¢ the interaction sum of squares considered to
be negligible equals d;m;. The total interaction sum of squares considered to be
negligible or sacrificed at step ¢ will be S; = dymy +. ..+ d;m,, and is hoped to grow
with minimal speed in proportion to the total dimension D; = dy +...+d;. Without a
stopping rule the growth of S; would end with the final contribution to the total sum
of squares for interaction due to the proximity measure of the last two row and two
column classes with dimension equal to 1. Stopping at the stage where there are H
groups of rows and K groups of coiumns implies retaining all the I 4-J —1 parameters
corresponding to an additive model, augmented with (H — 1)(K — 1) parameters for
interactions between the designated groups of genotypes and groups of locations.

In the following sections stopping rules will be reviewed as well as complemented
with a new one, which will be applied to the numerical example of the previous note
after the correction of an annoying error in it. Next, a different method of tracing
interaction will be presented followed by its application to the same example.

2. Stopping rules

A stopping rule embedded in a simultaneous F-test procedure was formulated by:
stop just before S; will exceed a critical value ¢(c) defined as

c(@)/(ns*) = F(n, f,a)

where 7 is the dimension of the total interaction space (I — 1)(J — 1), s? is an ex-
ternal and thus independent estimator of residual variance distributed as sz? /f
obtainable e.g. from replicate measurements, and F(n, f,a) the upper a-point of the
statistic F(n, f) with the parameter n for its numerator and the parameter f for its
denominator. Thus

c(@) = ns?F(n, f, ).

Since the choice of « is arbitrary and subjective, it was suggested instead to consider
the successive critical levels in testing the absence of interaction, i.e.

P = Pr{F(n,f) > 8i/(ns®)},

and as P, is non-increasing in %, to stop just before P; will be too small, or rather
before a drastic drop will occur, or if this does not occur at all, then just before the
largest decrease.
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An essentially different stopping criterion follows from the consideration of suc-
cessive mean squares for all interactions deemed to be negligible in the course of the
selection process, i.e. S;/D;. This ratio will generally increase as i increases. When
this mean square grows larger than the external variance estimate s2, one has the
indication that \S; is no more free from true interaction. On the one hand, the sum S;
is the cumulation of minimized interaction sums of squares, on the other hand, it can
be considered as the square of the perpendicular from the vector of observations to
the space spanned by the (I + J — 1)-dimensional space of main effects and the space
of interactions between the current number h of row groups and the current number
k of column groups as they have been chosen by the clustering procedure, i.e. the
square of the orthogonal projection of the observational vector to a space of dimension
(I=1)(J—1) = (h—1)(k —1). The ratio of this square to that dimension should
not exceed the external variance estimate. Otherwise, this internal residual variance
estimate would be too large due to contamination with non-negligible interaction.
Hence the new stopping rule prescribes to stop just before S;/D; will exceed s2.

3. Numerical example revised

As has been discovered by several readers of the previous note as well as by ourselves,
the data matrix of the numerical example given as Table 1 on page 210 has not been
completely presented according to our intentions. It was our purpose to rearrange
genotypes and locations such that feasible dendrograms for row and column groupings
would appear, and that groupings would occur only between adjacent rows or columns.
Unfortunately, the whole column marked 3 appeared by inexplicable causes in a wrong
position. The third column should have appeared in the utmost right position instead.
In other words, the columns as they were printed should have had the superscripts
1,2,7,3,4,5,6 instead of 1,2,3,4,5,6,7, respectively. The correct table appears here as
Table 1. Fortunately, there are no consequences from this error for the dendrograms
in Figure 1 on page 210 of our note nor for the corresponding text printed on page
211. In particular, the groupings of genotypes and also of locations mentioned in the
last two paragraphs of page 211 apply to the present revised Table 1.

Independently of this error, we now cast doubts on the preference, expressed in
the last paragraph of page 211 of our previous note, for a stop on the basis of the
successive values of P; at ¢ = 20. The largest decrease of P; shown at the bottom of
page 211 in Table 2, although not very spectacular in comparison to the other ones
is -170 occurring between i = 16 and i = 17, P, decreasing from -591 to -421, i.e.
passing the value -5, the transition between large and small critical levels. So we now
prefer to stop at ¢ = 16 leading to H = 6 and K = 5, over a stop at ¢ = 20 motivated
by the arbitrary choice of & about equal to -05 for a simultaneous test. The grouping
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Table 1. Average yields (kg per are) of 20 genotypes of corn at 7 locations according
to Denis and Vincourt (1982)

Location
Genotype 1 2 3 4 5 6 7
1 59.8 610 588 64.4 62.7* 53.4* | 75.6
2 645 703 604 73.2 78.3 70.8 81.5
3 59.5 68.2 60.0 72.3 76.9 71.5 79.9
4 65.1 71.9 585 71.9 83.2 71.5 82.1
5 642 682 60.1 74.2 85.4 784 | 81.2
6 56.4 65.2 58.0 68.0 80.6 73.0 | 79.6
A 63.5 65.6 60.7 71.6 73.2 69.4 | 74.3
8 58.3 65.7 60.0 74.6 73.7 66.1 72.7
9 619 66.1 629 74.5 75.6 74.4 | 83.4
10 58.9 648 67.7*+ | 715 72.0 70.0 | 80.9
11 572 641 56.2 75.4 72.4 65.7 | 81.2
12 580 66.1 622 74.5 82.0 70.0 | 85.5
13 62.0 718 8628 71.4 77.0 75.6 69.1%*
14 51.6 625 557 59.6 71.8 67.3 53.7*
15 629 648 61.2 64.5 77.9 65.5 67.2*
16 60.2 63.2 60.1 74.9 86.0%+ | 71.7 | 73.1
17 554 633 583 73.8 76.9 65.0 | 66.9*
18 53.7* 68.1 64.1 76.7 90.2*+ | 72.5 71.5%
19 54.5  67.3 60.2 82.2*4 | 81.0 73.1 76.7
20 56.1 594 625 70.4 85.9*+ | 654 | 76.3

corresponding to this preference is indicated with horizontal and vertical separation
lines in the present Table 1.

Application of the new stopping rule with the external variance estimate equal
to 8.59 and relatively stable due to f = 266 shows that S;/D; is equal to 8.25 for
t = 16, and to 8.84 for ¢ = 17. So it is decided to stop at ¢ = 16, a confirmation of
the decision to stop just before the largest decrease of F;. Both stopping criteria lead
to a description of interaction by 20 independent parameters.
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4, A different view on interaction

Although several users of the technique presented in our previous note are quite happy
with the resulting parsimony of interaction description, some geneticists have interest
in a more specific sort of interaction than that between groups of genotypes and groups
of locations. They are eager to discover specific combinations of a genotype and a
location which show exceptionally high deviations, positive or negative, from additiv-
ity of genotype and location effects. Such combinations may be very advantageous or
desirable under particular conditions.

An approach to identify such combinations may run as follows. One tries to
extend the regression model for additive row and column effects with a set of additional
indicator vectors. Each indicator vector has 1 at one special row column combination,
and zeroes elsewhere.

In order to select possible candidates of such indicator vectors of which there are
in principle IJ, possibly leading to linear dependence, one may firstly have recourse
to a stepwise selection procedure as for instance is provided by a SAS package for per-
sonal computers. This program forces I+ J — 1 regressors for additivity permanently
into the model by an INCLUDE option. Further it makes repeatedly one step forward
by choosing that indicator vector which has the largest F value, the ratio of the sum
of squares explained by the additional regressor over the mean residual square after
entering that regressor into the model. It should be noted that each step forward
implies a large number of recalculations of the regressors for additive effects. During
the process the program ascertains whether any of the previously entered regressors
could rather be removed from the model on the basis of a t-test. For this double
forward and backward process one may set a significance level to a two-sided t-test
for any indicator vector to be removed, and another similar one for any indicator
vector to be entered. Indicator vectors which are possibly linearly dependent on the
set of current model vectors will be removed automatically.

Without a stopping rule such a selection process with rather liberal significance
levels, e.g. -100 for forward selection, and -110 for backward removal, may continue
until practically all linearly independent indicator vectors will have been used. In
contrast to what might be hoped for, the residual mean square for the successive
models will not stabilize, but will often continue to decrease.

In analogy with the stopping criterion in the previous procedure requiring that
the increasing mean square for negligible interactions should not exceed the external
variance estimate, it is now proposed to stop the preliminary selection process just
before the decreasing residual mean square is going to drop below the external variance
estimate; otherwise, the regression model would certainly be too extensive, and too
many indicator vectors would be wrongly included into it.

Incidentally, it is noted that each inclusion of an indicator vector into a regres-
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sion model is closely related to a test whether the corresponding observation is an
outlier or an aberrant observation from the current model. Each inclusion makes the
corresponding residual vanish.

5. Numerical example reconsidered

Application of the selection process to the numerical example in the present Table 1
without a stopping rule showed that no indicator vector had to be removed except one
at a very late stage; but this one was re-entered immediately after its removal. After
an artificial stop was set at step number 100, all 100 vectors selected had critical
level smaller than -100 at the inclusion step. Table 2 shows the first 20 steps of
this preliminary selection process, turning out to be equivalent to a merely forward
process. The external variance estimate 8.59 is smaller than the residual mean square
8.62 at step 13, and larger than that at step 14. So the preliminary selection stopped
at step 13. ,

In order to check that the selection was not too strongly dependent on the order
or the step number of the process it was examined which singleton, pair, triplet,
quadruplet, up to 12-tuple from the 13 selected vectors was the best one as expressed
by the squared multiple correlation coefficient between the observation vector and the
regression model for additivity extended with the relevant subset. For each k-tuple
(k = 1,2,...,12) the first k selected vectors turned out to be the best, except for
k = 3 where (1,2,4) was the best triple, and (1,2,3) was the second best. Hence, the
investigation of this 13-tuple will be continued, in that particular order.

Next, in the regression model, including the 13 selected indicator regressors,
joint regression provides the simultaneous estimates of the regression coefficients
81,62,...,613 as well as the corresponding critical levels by a two-sided t-test. The
results concerning those regression coefficients are given in Table 3, and are supple-
mented with additive row effects 65.78; 71.29; 69.76; 72.03; 73.10; 68.69; 68.33; 67.30;
71.20; 68.20; 67.46; 71.19; 71.72; 63.03; 67.75; 68.56; 67.07; 72.47; 69.20; 66.38, for
rows 1 up to 20, and column effects —9.37; —3.15; 8.93; 2.42; 8.16; 1.17; 9.70, for
columns 1 up to 7, respectively. The residual mean square equals 8.622. The value of
F with 13 and 266 degrees of freedom for jointly testing the nullity of 61,8, ..., 63
is 11.08, as can be deduced from Table 2.

The following observations concerning this table may be made. Note that the sum
of row effect, column effect and §; if it does not vanish is equal to the observation; e.g.
y(18;1) = 53.7 equals 72.47 —9.37 —9.40 indeed. A striking feature is the relatively
high value (between -759 and -819) of the so-called tolerance of the indicator vectors,
i.e. one minus the squared multiple correlation coefficient of such an indicator with
the set of the other 37 = 25 + 12 regressors, 25 being the sum of the dimensions of
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Table 2. Stepwise selection of the first 20 indicator vectors extending the additive
model

Step Row;column # Residual Critical level Residual
number of observation sum of squares 2-sided {-test mean square
0 2108.41 18.50
1 14; 7 1883.15 0.0004 16.67
2 18; 5 1762.70 0.0066 15.74
3 ;6 1648.69 0.0066 14.85
4 ;5 1523.32 0.0033 13.85
5 20; 5 1431.29 0.0093 13.13
6 13; 7 1342.77 0.0088 12.43
7 19; 4 1255.82 0.0076 11.74
8 16; 5 1188.64 0.0160 11.21
9 15; 7 1122.00 0.0141 10.69
10 177 1053.12 0.0104 10.13
11 18; 7 994.22 0.0152 9.65
12 18; 1 928.65 0.0085 9.10
13 10; 3 870.80 0.0110 8.62
14 14; 4 827.30 0.0239 8.27
15 15; 4 781.43 0.0178 7.89
16 19; 1 745.65 0.0325 7.61
17 20; 3 710.08 0.0304 7.32
18 16; 7 676.48 0.0309 7.05
19 11; 4 647.47 0.0418 6.82
20 8, 7 619.22 0.0411 6.59

row and column contrasts. This indicates that the deviations will be estimated with
small correlations among each other. Since the square of the centred indicator vector
equals unity minus the reciprocal of the number of observations the tolerance should
be multiplied with that square for establishing the squared length of the perpendicular
from the non-centred indicator to the space spanned by all the 38 remaining regressors.
The reciprocal of the latter squared length is the variance factor of 02 or s? for the
relevant deviation estimator, as it has been used for establishing the critical level
of the relevant f-statistic. The critical levels are considerably smaller than those
in Table 2, except the last one which is equal to that in Table 2 as was expected.
From the size of the critical levels, which all would have been smaller than -01 if one
had used the external variance estimate, as well as from the preceding convincing -
value, we conclude that the 13 designated observations are exceptional for an additive
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Table 3. Deviations from additivity estimated by linear regression with critical levels
and indicator tolerances

Subscript Row;column # Deviation Critical level Tolerance

1 14; 7 -19.03 0.0001 0.809

2 18; 5 9.57 0.0056 0.759

3 1; 6 -13.55 0.0001 0.797

4 1;5 -11.24 0.0010 0.789

5 20; 5 11.36 0.0008 0.812

6 13; 7 -12.32 0.0003 0.809

7 19; 4 10.57 0.0016 0.819

8 16; 5 9.28 0.0055 0.812

9 15; 7 -10.25 0.0023 0.809

10 177 -9.87 0.0033 0.809

11 18; 7 -10.67 0.0022 0.756

12 18; 1 -9.40 0.0063 0.765

[ 13 10; 3 8.43 0.0110 0.819

model. These exceptional observations are marked with a star in Table 1. The five
observations with a positive deviation are marked with an additional + sign.

It is interesting to note that 8 of the 13 exceptional observations appeared in
three groups, two of size three and one of size two in columns 5 and 7 within classes
formed by the clustering process of rows and columns as shown in Table 1; moreover,
within each of these three groups the signs of the aberrations agree. This phenomernon
supports the results of the previous clustering. On the other hand, the fact that this
new modelling of interaction requires 13 instead of 20 independent parameters may
be a good reason for a preference of the latter, also since it localizes the interaction
not vaguely, but explicitly in 8 cells of the classification generated by the previous
clustering of rows and columns. An additional advantage of the latter method of
tracing interaction is the fact that it does not require orthogonality of rows and
columns.

It should be mentioned that not much can be learned about the latter type of
interaction from looking at the residuals with respect to the additive model adjust-
ment. A Q-Q-plot of the ordered absolute values of those residuals versus half-normal
deviates shows clearly irregular behaviour only for the three or four largest values.
The residuals and their size give no reliable indication as to the observations which
are possibly extraordinary. Only the five absolutely largest residuals have the cor-
responding indicator subscripts in Tables 2 and 3 in the same order. From there
onwards the appearance of an indicator vector becomes unpredictable. For instance,
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the observation in cell (15;1) with the fifth largest residual 6.12 was not a candidate
for being an outlier even after 33 steps of the selection procedure, while the observa-
tion in cell (15;7) with residual —6.02 was the ninth candidate with & final deviation
estimate of —10.25. When looking at the course of the residual per observation during
the adjustment of 14 successive models one observes sometimes a steady decrease in
absolute value sometimes a steady increase in absolute value, and many times hardly
any change of importance. In particular, there was no change of sign at all, except at
the obligatory appearance of a zero residual.

For completeness sake it should be recalled that no exact meaning should be
attached to probability statements in the present selection process. It was cur purpose
to compare quantitatively the consequences of successive steps in this data-analytic
procedure which led to a highly parsimonious and informative model for interaction
with a residual variance estimate about equal to an external one. If such an external
estimate would not be available it is recommended to use the procedure sketched in
section 5 (page 213) of the previous note.

6. Why not otherwise, a postscript

Referees suggested that a backward selection process might perhaps give safer results,
and would more closely resemble the procedure of our note consisting of the removal
of negligible sums of squares of interaction components. But in an additive model
extended with a full set of 7.J indicators each of those indicators is equally eligible for
the first removal, and, in addition, without any contribution to explained interaction
sum of squares. A similar situation holds for all indicators with respect to observations
in the same row or the same column as the first one, the most logical choice for reaching
linear independence among the retained indicators. So we find ourselves in a train of
arbitrary removals none of which is justified, and thus in contrast to common sense.
These removals are irreparable after reaching linear independence of indicators left.
Hence we preferred forward selection from sheer necessity.

The danger of strong dependence among estimated deviations which had also
been warned against, is contradicted by our observations concerning tolerances in
Table 3, and the consequences of their size. Moreover, the matrix X’X of rank 38
concerning the additive model extended with the 13 selected indicator variables has
a reasonable condition number, i.e. the ratio of the largest and smallest eigenvalue
equal to 73.21.

Another suggestion to use simultaneous inference according to Bradu and Gabriel
(1974) in the selection of highly interacting genotype-location combinations must be
directed toward residuals with respect to the additive model, and not to interactions
in smaller or larger two by two tables, since these were already used in our previous
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note and in sections 1 and 2 of the present paper. But this author cannot get further
than the rejection of the nullity of the first deviation (and largest residual) with
respect to an additive model at critical Bonferroni level -0004 x 140 = -056, to be
read from Table 2. How to handle ensuing residuals in this vein is still obscure to
him. Of course, the F-statistic for testing simultaneously the nullity of the 13 selected
deviations is overwhelmingly large, but how to account for the fact that selection took
place is unclear. It is hoped however that a reasonable data analytic approach has
been reached. '

Finally, the new approach by Pefia and Yohai (1995) consisting of finding rela-
tively large components in the eigenvectors of a matrix M proportional to EDHDE
where H is the (rank 26) hat matrix X(X'X)™ X’ of the additive model, E is the diag-
onal matrix of residuals with respect to that model and D is diagonal with elements
(1—hi;)™1, seems to indicate that our first four selected observations are outlying as
well. That no further exceptional observations have been discovered is perhaps due
to the fact that residuals with respect to additivity form the only data dependent
input of this procedure, and not the consequences of the necessary adaptations of the
model.
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Badanie interakcji w tablicach dwukierunkowych

STRESZCZENIE

Praca dotyczy metody skupiania stizacej do otrzymywania oszczednego, w sensie
liczby uzytych parametréw, opisu interakcji w tablicach dwukierunkowych, opisane;
przez Corstena i Denisa (1990). Autor wprowadza regule zatrzymania bazujaca na
poréwnaniu Sredniego kwadratu dla nieistotnych interakcji z niezalezna ocena wari-
ancji. Przedstawia tez sposb wyjadniania interakcji poprzez identyfikacje szczegdlnie
duzych odchyleni od addytywnoéci. Odchylenia te s3 wykrywane w procesie selekcji w
przéd lub wstecz. Zamieszczony przyklad numeryczny pokazuje, ze obecna propozy-
cja pozwala uzyskaé bardziej oszczedny opis interakcji.

SLOWA KLUCZOWE: interakcja, tablica dwukierunkowa, skupianie, reguta zatrzyma-
nia, $redni kwadrat dla nieistotnych interakcji, odchylenia, obserwacje odstajace, wek-
tory wskaZnikowe, selekcja w przéd, wzgledna wartosé reszt.
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